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Abstract The spatial distribution of particle pollution is strongly influenced by wind patterns. In this

aper, an attempt will be made 1o detect the pattern of particle poilution, as measured at a number of monitoring
stations in the Sydney region, for summer and winter periods. The wind field patiern at different hours of the day for
different seasons will have influences on the dynamics of the particie distribution in the Sydney basin. This will explain
the temporal shori-term relationship between the particle distribution and meteorological conditions. However, by
taking into account both the anthropogenic long-term trend and the intermittency in the time series for the classification
of stations, the particle distribution will have a different patiern compared to the short-term one. This distribution
pattern is not dependent on meteorological conditions.

Fing particles levels, as measured by nephelometry, at different stations, are classified using the correlation method to
determinc the short-term particle distribution pattern, The Hellinger-Kakutani metric of spectral distance between the
specira of air pollution time series at the stations is used to determine the long-term particle clustering pattern. The
spectrum of fine particle time series will be determined using a recently developed model. This model consisis of a
Long Range Dependence (L.RD) component that extracts the trend due to anthropogenic activities without the influence
of metcorological parameters and the Intermittency component which accounts for the short-term, high frequency
fluctuation in the time series.

The results of the two classifications based on the short-term correlation and the spectral Heilinger-Kakutani metric
incorporating both Jong-term particie trends and intermitiency characteristics at different stations will give a complete
pictare of the spatial characteristics of the particle distribution in the Sydney basin.

classification of stations based on ozone charactenstics
also has been recently studied (2) to determine the

1. Introduction

The Sydney basin currently has 18 monitoring stations
scattered throughout the region. Air pollutants and
meteorological parameters are measured continuously
on a 2-minute basis and consclidated into hourly
valugs that are used as the basis for all statistical
analyses. The current monitoring network in the
Sydney basin is depicted in Figure 1. For most of 1996,
9 stations were measuring fine particles by
nephelometry.

The two maior air pollution problems in the Sydney
airshed are photochemical smog and fine particles.

_ Photochemical smog {measured as ozone) is produced

primarily on summer days from complex reactions of
oxides of nitrogen, and reactive organic compounds
{ROC) under strong sunlight. Fine particles, as

~measured - by -nephelometer. for - visibility range, are.

produced in both winter and sammer periods by the
emission of particles from motor vehicles, wood
burning, bush fires stc. High levels of fine particles,
however, occur more frequently in winter than in
SUMImer.

Photochemical smog has been studied extensively by
the Metropolitan Air Quality Study (MAQS) (1). The

Figure 1
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spatial photochemical smog characteristics across the
Sydney region.

In this paper, we examine some aspects of fine particle

Air quality monitoring stations in Sydney
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spatial distribution in the Sydney basin by classifying
stations according to correlation and spectral density.

Because of the different nature and characteristics of
photochemical smog and fine particle pollution, the
spatial distribution patterns for each will be different.

It is understood that the particle characteristics at a
location are contained in the paricle concentration
lime series at that site. These characteristics can be
modelled in the spectral representation of the time
serics, The similarity or difference of the
characteristics between the sites can be determined by
their respective spectral representations. A model
representing the spectrum as well as a measure of the
similarity of the two specified spectral representations
wiil be described.

The study of particle spatial distribution can provide an
understanding of the dynamics of particles movement
{due to meteorology) and information about sub-
regions, which have different pollution characteristics,
In addition, it can be used to assist in the assessment of
whether the current number of monitoring stations is
adequate for collecting information representative of
pollution concentrations for a particular region. To
adequately understand these issues, the study of spatial
distribution of particles over different periods under
different conditions is also required.

2. Cluster analysis

Cluster analysis is used to identify groups of objects
which have similar characteristics to a degree greater
than chance of occurrences. Most clustering methods
are based on a similarity or dissimilarity measure.

Two commonly used measures of similarity in airshed
classification are sample correlation computed from
the time series at a pair of sites and Euclidean metric
between two sites computed from their air potlution
goal exceedences. A simple linkage algorithm by
Anderberg (6) can be used for the correlation measure,
but the average-linkage hierarchical measure is more
appropriate for an Euclidean metric based on the goal
exceedence patterns,

3  Classification of siations
characteristics of time series

using  spectral

3.1 Methodology

The model of the particle time-series. is based on the -

long-range dependence (LRI} and second order
intermittency method as described by Anh et al (3).
The method describes a stochastic process with LRD,
characterised by a spectral density having a singularity
of some fractional order at frequency 0, and some
intermittency. The LRD component in the air pollution
time series provides an estimate of the long-term trend
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{5), while the intermittency component characterises
the high frequency fluctuation in the series.

The spectral density of the particle time series can be
modelled as

c i
W) = e,
s o (1+o’)P
e>00<y <1/20<B <lweR
(1
and, in discrete form, is approximated as
G’ i 1
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where.the second component on the right hand side of
equation (2) is the spectral density of a stationary
AR(p) process,

The above spectrum corresponds to the model
(1-8,B-.-8 B Y1-B)y*"* X =¢,
where B is the backshift operator

BX, =X,

- . . . . 2
and &, is white noise with variance o°

¥ is the LRD parameter while B represents the infinite
Variance of intermittency parameter,

Estimation of y+f can be determined by applying one
of the methods for finding the LRI component (Anh et
al (7} or Haslett and Raftery (8)).

The exponent y can be found by first applying a
wavelet transform, using the Haar wavelet function, to
the time series then one of the above mentioned
methods for finding the LRD component can be
applied on the transform series to estimate v (3).

3.2 Hellinger-Kakutani metric
A commonly used metric to measure the distance

between two spectral densities, J and g is the
Euclidean metric:

I

d(f,2)=([ [ (fO, )= g0 u)’drdp)"

In this paper, we consider the Hellinger-Kakutani
metric which provides an optimum distance that can be
readily computed from these spectral representations:
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Another metric that has been used is the Kullack-
Leibler information distance. This metric has been
used successfully before in photochemical smog
classification (2.

The Hellinger-Kakutani metric is defined as:

Foopy+glh,pw)
Yd
T mIgly

d>(f.gy={ | I
{

This metric is invariant with respect to linear filtering
while d, is not. It is therefore advantageous fo use d;
(5}

3.3 Application to particie time series

There are § stations that have a reascnable long fime
serigs of maximum daily data for the period 1993 to
1996 (Kensington was relocated to Randwick in March
19935). These stations are:

1 Blacktown 2 Bringelly
3 Kensington 4 Liverpool
5 Richmond 6 Rozelle

7 St Mary 5 Westmead
9 Woolooware

Missing daily data in the series were replaced by
interpolated values. However, if more than 3 daily
values are missing, the averages of the values for the
same day in other years were used to replace the
missing data.

The spectral densities of the time series are calculated
using both the LRD and sccond-order interrnittency
parameters, ie. y and B. The Hellinger-Kakutani
metrics between siations are then found by using
equation (4) as described above.

3.4 Classification results

The calculated Hellinger-Kakutani metrics are used to
classify the stations based on spectral similarity for
daily peak of fine particle concentrations. The results
show that there is a stropg similarity of long-term
spectral characteristics between the 3 siations:
Richmond, Blackiown and 5t Mary. These stations are
located in the West and North West of Sydaey in the
Nepean-Hawkesbury catchment area.

Surprisingly, there are also some similarities, in terms

of “spectral characteristics, between Bringelly -and-

Woolooware, and berween Liverpool and Rozelie
despite their physical separation (see map in Figure 1),

Figure 2 shows the dendrogram and the groups of
classified siations.
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4. {lassification of stations

eorrelation patterns.

using particie

A conventional method for determining the similarity
of particle characteristics at different stations is to find
the correlation coefficients between the specified-
hourly time series. Because the correlation is also
influenced by meteorology, time series representing
different seasons should be used.

In this way, we can determine the dynamics of the
particle pattern across the Sydney basin changing over
time for each season. The following 12 sites are used
in the correlation and clustering analysis.

1 Kensington pi Rozelle

3 Liverpool 4 Blacktown

5 Bringelly ] Woolooware
7 Richmond 8 St Marys

9 Westmead 10 Peakhurst

1} . Smithheld 12 Dougtas Park

4.1 Particle (Nephelometer), Winter 1993

There are only 9 sites (first 9 of the above 12 sites) that
have daily 1-hour data for the winter period of 1993
{June-August). The correlation coefficients for 9am
and 3pm of daily data between the sites are calculated
and then classified using the usual Evclidean metrics.

The results show that at 9am and 3pm the particle
distribution pattern are not very different. At Sam, the
stations at St Mary, Liverpool and Bringelly are
strongly refated. The same can be said for the stations
of Kensington, Rozelle and Westmead. At 3pm, St
Mary, Liverpool and Bringelly are still in the same
group while the second group now includes Blacktown
but leaves out Westmead.

The result of the classification is shown in Figare 3.
4.2 Particie {Mephelometer), Summer 1994

For the period of summer 1994, we have 12 monitoring
stations that have data to be used for correlation
analysis.

The result, in Figure 4, shows that the particle patterns
at 9am and 3pm are very different. At 9am, there is
only one group of stations showing strong correlation
with each other in terms of daily values. These stations
are Blacktown, Smithfield, Liverpoot, Bringeily and
St. Mary. However, at 3pm, there are 2 or 3 distinct

- groups.of. stations.. The first. cluster. consists, of St

Marys, Blacktown and Smithfieid. The second cluster
includes Kensington, Woolooware and possibly
Peakhurst. The third cluster links Richmond and
Rringelly and also has some correlation with the first
group.



The different particle patterns at 9am and 3pm shows
that the sumuner sea breeze in the afternoon does
change the particle distribution in the Sydney region.
There are two sub-regions: one along the coast and one
in the West,

3. Wind field description

Because of the strong seasonal effect in Sydney, the
wind pattern at a particular hour of the day in the
winter period is different from the panern at the same
hour in the summer period.

Typical wind patterns at 9am and 3pm for each of the
summer and winter periods are shown in Figure 3. The
1996 data are used instead of 1993 and 1994 data,
since  more  stations  having  meteorological
measurements were added to the network and hence
the resolution of the wind pattern is increased. Wind
patterns, for the summer and winter periods at 9am and
3pm. using 1993 or 1994 data are similar to the
corresponding patierns using 1996 data.

The wind data measured at each station are averaged
for the summer period of 1996 (1/12/1995 to
01/03/1996) at 9am and 3pm. Similarty, the 9am and
Jpm patterns for the winter period are averaged for the
winter period of 1996 {1/6/1996 to 1/9/1996) at each of
the above hours.

In the winter period, at 9am, there is 2 light southerly
wind flow from the South—West and westerly flow
from the West to the eastern part of Sydney. In the
afternoon, at 3pm, the wind is moderate and on
average from the South-West,

In the summer period, averaged wind data shows that
light wind flows from the South in the early morning
across the Sydney basin but became moderate south-
easterly in the afternocon. This is consistent with the
different particie distribution patterns in the Sydney
region at %am and 3pm.

6. Conciusion

Some information on the particle distribution pattern in
the Sydney region can be obtained by first analysing
the long-term and intermittency characteristics of the
particie concentration time series at each of the stations
" and then clasSifying them into pattérn clusters. The
result shows that the 3 stations in the West and North-
West (5t Marys, Blacktown and Richmond) have

. similar long-range trend and high frequency fuctuation .

or exceedence-like behaviour.

Short-term correlation analysis (used with a clustering
method) and the wind field patierns can also reveal the
dynamics of the particle distribution. We have shown
that, using this technigue, during the winter period,
there are roughly two groups of particle distribution
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characteristics: one in the West and South-West and
one in the East and along the Parramatta river basin.
The distribution pattern is approximately the same at
Qam in the morning and at 3pm in the afternoon.

In the summer period, the particle distribution patterns
are different in the morning and in the afternoon. In the
morning, there is only one group of stations in the
West and South-West of Sydney which shares similar
particle distribution characteristics. In the afternoon,
due to sea breezes, there are roughly two groups of
particle distribution characteristics: one along the coast
and one infand.

measuring fine particles can be grouped into clusters
based on some measures of similar characteristics. But
it does not mean simply that each ciustering region can
be served by only one station as the clustering patfern
changes with time and season of the vear.
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